Proton and Anti-proton Yields at Mid-rapidity in Central Au+Au Collisions at $\sqrt{s_{NN}}=130~{ m GeV}$

D. Beavis ^a for the BRAHMS Collaboration ^{a,b,c,d,e,f,g,h,i,j}

 $^{\mathrm{a}}BNL$ $^{\mathrm{b}}Johns\ Hopkins$ $^{\mathrm{c}}NBI$ $^{\mathrm{d}}NYU$ $^{\mathrm{e}}Texas\ A\&M$ $^{\mathrm{f}}U.\ Bergen$ $^{\mathrm{g}}U.\ Bucharest$ $^{\mathrm{h}}U.\ Jagellonian$ $^{\mathrm{i}}U.\ Kansas$ $^{\mathrm{j}}U.\ Oslo$

Presented by: D. Beavis

Abstract

Net-baryon (baryon – anti-baryon) density at the mid-rapidity (y=0) is a measure of transparency/stopping of heavy-ions at relativisic collisions. The BRAHMS Experiment at RHIC measures identified charged particle momentum spectra at y=0 with two TPC's for tracking and a Time of Flight Hodoscope for particle identification in the Mid-Rapidity Spectrometer. We present proton and anti-proton yields as a function of transverse momentum in central Au+Au collisions at $\sqrt{s_{NN}}=130$ GeV and discuss the deduced net-proton (proton – anti-proton) distributions at y=0.